Mimetic Preconditioners for Mixed Discretizations of the Diffusion Equation

J. D. Moulton[†], T. M. Austin[†], M. J. Shashkov[†], J. E. Morel[‡], {moulton, austint, misha, jim}@lanl.gov [†] Mathematical Modeling and Analysis Group, [‡]Continuum Dynamics, Los Alamos National Laboraory, Los Alamos, NM

Class of problems

We consider the 2D steady-state linear diffusion

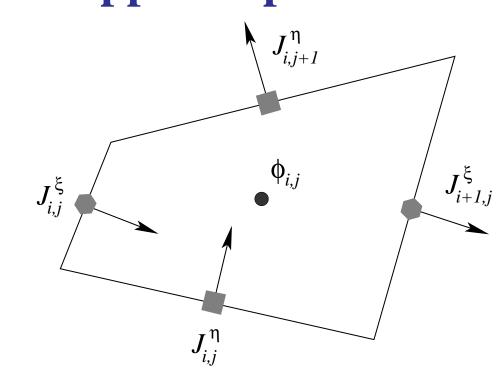
$$\nabla \cdot \mathbf{J} = Q(x, y)$$
$$\mathbf{J} = -D(x, y)\nabla \phi$$

subject to the Dirichlet boundary condition $\phi(x,y) = g(x,y)$.

Key issues influencing the discretization and the linear solver include:

- > D(x,y) is defined on, and possibly discontinuous on, a very fine scale
- > coarse-scale view of the fine-scale structure may be anisotropic
- > although the grid is logically rectangular, it may be severly distorted.

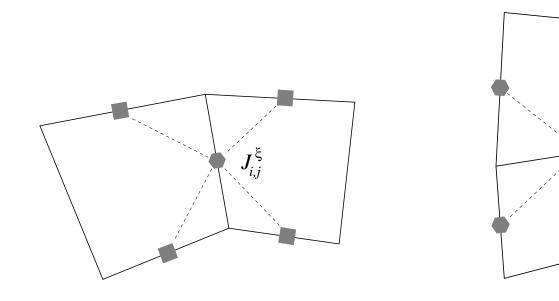
The Support Operator Discretization



(current)
$$\begin{bmatrix} \mathcal{A} & -\mathcal{D}^{\dagger}\mathcal{M} \\ -\mathcal{M}\mathcal{D} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{J}_h \\ \boldsymbol{\phi}_h \end{bmatrix}$$

- \succ Natural discretization of the divergence, \mathcal{D}
- \triangleright Derive the corresponding gradient, $-\mathcal{D}^{\dagger}\mathcal{M}$
- > Generate a symmetric, but indefinite, linear system.

The Schur Complement for ϕ_h



Stencil schematic for the sparsity structure of A.

Properties of the Schur complement for ϕ_h :

- $ightharpoonup \mathcal{S}_{\phi} = \left[\mathcal{M}\mathcal{D}\right] \left(\mathcal{A}\right)^{-1} \left[\mathcal{D}^{\dagger}\mathcal{M}\right]$
- > S_{ϕ} is a symmetric positive definite matrix.
- $> S_{\phi}$ is a global matrix, but with sparse factors.
- ⇒ the matrix-vector product needed by CG is possible.

Mimetic Preconditioner I: A Simple Lumping of A

Diagonal approximation of the flux matrix:

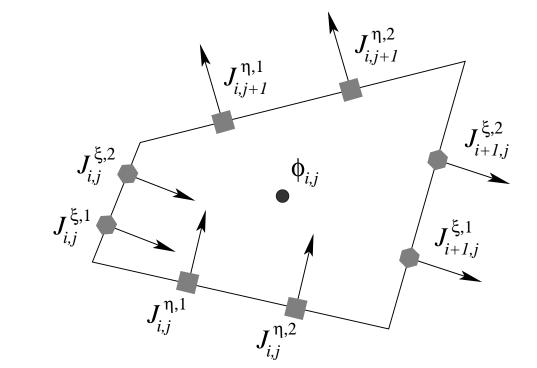
$$\begin{bmatrix} \mathcal{A} & -\mathcal{D}^{\dagger} \mathcal{M} \\ -\mathcal{M} \mathcal{D} & 0 \end{bmatrix} \text{ lumping} \Longrightarrow \begin{bmatrix} \widehat{\mathcal{A}} & -\mathcal{D}^{\dagger} \mathcal{M} \\ -\mathcal{M} \mathcal{D} & 0 \end{bmatrix}$$

Properties of the resulting Schur complement for ϕ_h :

$$ightharpoonup \mathcal{S}_{\phi}^{D} = \left[\mathcal{M}\mathcal{D}\right] \left(\widehat{\mathcal{A}}\right)^{-1} \left[\mathcal{D}^{\dagger}\mathcal{M}\right]$$

- > S_{ϕ}^{D} is a symmetric positive definite matrix.
- > S_{ϕ}^{D} has a 5-point cell-based stencil
- \triangleright Approximately invert \mathcal{S}_{ϕ}^{D} with a single V-cycle of multigrid.

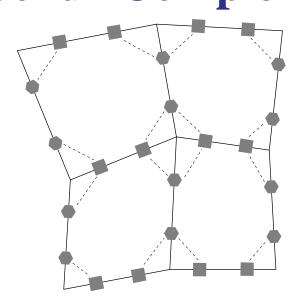
Mimetic Preconditioner II: Two-Flux Support Operator



(current)
$$\begin{bmatrix} \widetilde{\mathcal{A}} & -\widetilde{\mathcal{D}}^{\dagger} \mathcal{M} \\ -\mathcal{M}\widetilde{\mathcal{D}} & 0 \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{J}}_h \\ \boldsymbol{\phi}_h \end{bmatrix}$$

- \succ Natural discretization of the divergence, $\widetilde{\mathcal{D}}$
- \triangleright Derive the corresponding gradient, $-\mathcal{D}^{\dagger}\mathcal{M}$
- ➤ Generate a symmetric, but indefinite, linear system.

The Schur Complement for ϕ_h



 \Longrightarrow Order \widetilde{J}_h around vertices, then $\widetilde{\mathcal{A}}$ has a block diagonal structure, with 4x4 blocks.

Schematic for the structure of $\widetilde{\mathcal{A}}$

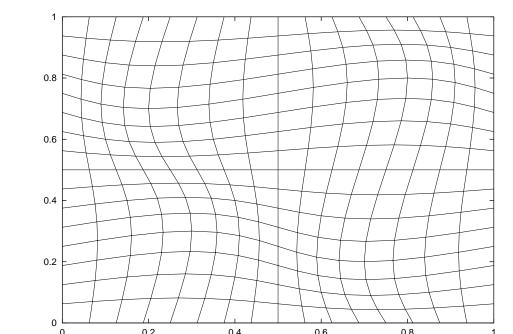
Properties of the resulting Schur complement for ϕ_h :

- $> S_{\phi}^{TF} = \left[\mathcal{M}\widetilde{\mathcal{D}} \right] \left(\widetilde{\mathcal{A}} \right)^{-1} \left[\widetilde{\mathcal{D}}^{\dagger} \mathcal{M} \right]$
- > S_{ϕ}^{TF} is a symmetric positive definite matrix.
- > S_{ϕ}^{TF} has a 9-point cell-based stencil (second order on smooth grids)
- \triangleright Approximately invert \mathcal{S}_{ϕ}^{TF} with a single V-cycle of multigrid.

Examples:

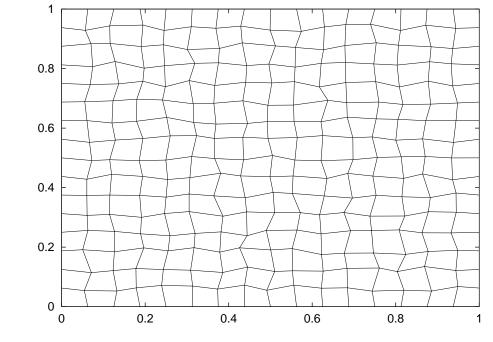
- > D(x,y) = 1, Dirichlet boundary conditions, polynomial solution.
 - the challenge arises from the distorted grid.
- \triangleright Iteration counts are for CG on the cell-based system, S_{ϕ}
 - $CG(S_{\phi})$ denotes only diagonal scaling of S_{ϕ}
 - $CG(\mathcal{S}^D_{\phi})$ denotes the lumped preconditioner
 - $CG(\mathcal{S}_{\phi}^{TF})$ denotes two-flux preconditioner
- > Convergence criteria is a relative residual in the l_2 norm of 10^{-6} .
- > A single V(1,1) cycle of BoxMG inverts the cell-based preconditioner.

A Smooth Grid (global smooth mapping)



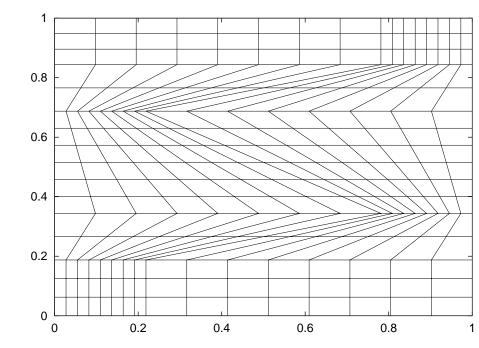
	Iteration Counts					
Mesh Size	$oxed{CG(\mathcal{S}_{\phi})}$	$CG(\mathcal{S}_{\phi}^{D})$	$igg CG(\mathcal{S}_{\phi}^{TF})$			
16×16	43	9	4			
32×32	85	10	5			
64×64	164	10	5			
128×128	319	10	5			

A Randomly Perturbed Uniform Grid



Iteration Counts					
$CG(\mathcal{S}_\phi)$	$CG(\mathcal{S}_{\phi}^{D})$	$CG(\mathcal{S}_{\phi}^{TF})$			
43	8	4			
78	9	4			
144	9	4			
279	9	4			
	$CG(\mathcal{S}_{\phi})$ 43 78 144	$ \begin{array}{c c} CG(\mathcal{S}_{\phi}) & CG(\mathcal{S}_{\phi}^{D}) \\ 43 & 8 \\ 78 & 9 \\ 144 & 9 \\ \end{array} $			

The Kershaw Grid



Iteration Counts					
Mesh Size	$CG(\mathcal{S}_{\phi})$	$CG(\mathcal{S}_{\phi}^{D})$	$CG(\mathcal{S}_{\phi}^{TF})$		
16×16	53	34	15		
32×32	108	44	15		
64×64	211	52	14		
128×128	406	58	13		

Conclusions

PCG on the reduced scalar system

- > augmented system leads to a 9-point cell-based preconditioner
 - ① robust with respect to grid distortion
 - 2 convergence is h-independent
 - 3 readily extends to three dimensions
- > inversion of A needs to be done efficiently.

Avoiding the inversion of A

- > Preconditioned GMRES on the full system
- > Preconditioned CG on the reduced scalar system of the *local* SOM.

Acknowledgements: This research was performed under the auspices of the U.S. Department of Energy, under contract W-7405-ENG-36, and is to be referenced as LA-UR-01-807.